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Storage capacity of the truncated projection rule 
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Institut fiir Theoretische Physik der Humboldt-Universit~t, lnvalidenstrasse 42, Berlin, 
0-1040, Federal Republic of Germany 
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Abstract. A neural network model storing correlated patterns by using a loeol variant of 
the projection rule is shown to be equivaleni 10 the Hopfield model. 

The projection (pseudo-inverse) learning rule is known to store up to p = N linearily 
independent patterns {#?I; [?= *I; i = 1 , . . . , N ;  p = 1,. . . , p  in a network of N + m  
formal neurons S, =il (Kohonen 1984, Personnaz et a1 1985). According to this rule 
the synaptic matrix J,  is calculated via 

where 

is the overlap matrix of the patterns. Although there are fast algorithms to invert CFu 
the non-locality of (1) is a serious disadvantage in modelling, e.g. learning processes. 

Usually one studies ensembles of random patterns with probability distributions 
factorizing in the neuron index i but not in the pattern index p, i.e. 

P ( ( C ) ,  52,. . ,, 5 9 )  = n  P(51, 62, . , . ,CY). (3) 

Correlations between the patterns giving rise to non-trivial forms of the overlap matrix 
occur due to correlations between the values of different patterns at the same 

neuron. Well-known examples are patterns with low levels of activity and hierarchically 
correlated patterns. 

The matrix 

C,” = ( (C?C3 
where ((. . .)) denotes the average over the distribution (3). then differs from CFu by 
terms of order N-”’ only. If one were using C;:  instead of c;: in ( 1 )  the resulting 
learning rule would be local, since C,, depends only on the properties of the ensemble 
of patterns and not on the particular realization. 
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In fact this replacement was used recently for the special case of a regular pattern 
hierarchy (Cortes et a1 1987). Somewhat surprisingly, the resulting model turned out 
to be equivalent to the Hopfield model using the Hebb rule and correspondingly the 
storage capacity was a,=0.14 instead of a,= 1. 

I n  this paper we show that this result is rather general. For arbitrary pattern statistics 
with the property (3) the ‘truncated’ projection rule 

can store u p  to pmax = 0.14 N patterns. Moreover, the thermodynamic properties of 
the phases with one condensed pattern are exactly the same as in the Hopfield model 
(Amit et a/ 1987). 

To prove this we construct a linear transformation TFu to a new set of patterns 
{ c y ] .  The nrigini! pittern set { c y )  is characterized by 

(:=*I ((m=: ((C”t3=: C’” 

CY = Z T A  

For the transformation 

for as many p z 2  as possible. 
Equations (6) give rise to two equations for the rows of T,.. Since we are looking 

for a regular transformation the rows must be linearly independent of each other and 
hence (6) can be fulfilled for ( p - 2 )  patterns {l;) ,...,{( 7 ) .  With the help of an 
appropriate orthogonalization procedure we can therefore find a transformation which 
gives rise to 

((5’)) = CI =: c ((5’)) =: 6 # 0 

((5“))=0 jLa3 (7) 

((5”5”))=6’,” jL, u = l ,  . . . ,  p .  

From (4) and (7) we then find for the synaptic couplings 

The free energy is now calculated using standard techniques [4]. Note that only the 
condensed pattern (l:} has the usual binary distribution 

because of ( 5 ) .  F o r j ~ 2 2  the 5: are not restricted to the values * I .  However, due to 
the central limit theorem for the average over these ‘high’ patterns only the first two 
moments are needed (see Amit er al 1987) which are given by (7).  Hence the average 
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over the 5: with p a 3  gives the same result as for the Hopfield model. For 1; we use 
the distribution 

P([;) =(2?r)-’/2 

in order to meet ( 7 ) .  The calculation of the free energy can be performed within the 
replica-symmetric approximation by introducing the usual order parameters m and q 
and in addition a = (1/N) X S, together with their conjugated Lagrange multipliers /, 
r and k respectively. For the self-consistent equations we get 

m = ((6’ tanh p ( k +  / ( I +  ( a r ) ” 2 z ) ) )  

2b2c(a  - cm) 
/ = m -  

a =((tanhp(k+/5’+(ar)’’*z))) 

( 1  - c2)’(1 - P + P q )  

q =((tanh’ p( k +  /g’+ (nr)’”z)))  

2b2(a  - c m ) 2  
r = ( l - p + p q ) - ’  

a(1 -  c2)2  

As usual ((. . .)) now denotes the average over 1‘ and a Gaussian variable z with zero 
mean and unit variance. Equations ( 9 )  are solved by a = cm giving rise to / = m and 
k = 0. The remaining equations for m, q and r are exactly the same as those found by 
Amit et a/  for the Hopfield model. Note that the bias c in the 1‘ average is irrelevant. 

It is hence possible for pattern ensembles with site-factorizing but otherwise 
arbitrary statistics to construct a local learning rule with a similar performance as the 
Hebb rule for independent, non-biased patterns. On the one hand this underlines the 
universality of the storage capacity a,=0.14. On the other hand it indicates that 
the improvement to ac = 1 (Kanter and Sompolinsky 1987) is just due to the O( IC’/’) 
differences between C?,,“ and C+”. 

It should be noted that the proposed learning rule is local in so far as the value 
of the synapse J,  is determined by information about the pattern set at neurons i and 
j only. Nevertheless, adding a new pattern to the set of stored patterns is more 
cumbersome than for the Hebb rule since one needs the values of a// patterns at 
neurons i and j in order to determine the new value of Jq,  whereas for the Hebb rule 
just the values of the new pattern at these neurons suffices. Still, the proposed learning 
rule is superior to the original projection rule in the sense that the value of J ,  remains 
unaffected by changes of some patterns at other neurons k. 
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